废水中氮的去除技术
作者:admin 浏览次数:1799
氮的去除
废水中的氮以有机氮、氨氮、亚硝酸氮和硝酸氮四种形式存在。在生活污水中,主要含有有机氮和氨态氮,它们均来源于人们食物中的蛋白质。新鲜生活污水含氮中有机氮约占总氮的60%,氨氮约占40%。当污水中的有机物被生物降解氧化时,其中的有机氮被转化为氨氮。经活性污泥法处理的污水有相当数量的氨氮排入水体,可导致水体富营养化。水体若为水源,将增加给水处理的难度和成本。因此二级处理的出水有时需进行脱氮处理。脱氮的方法有化学法和生物法两大类,现分别加以论述。
1化学法除氮
常用于去除氨氮的方法有吹脱法、折点加氯法和离子交换法。它们主要用于工厂内部的治理,对于城市污水处理厂很少采用。
(1)吹脱法 废水的氨氮可以气态吹脱。废水中,NH3与NH4+以如下的平衡状态共存:
NH3+H2O=NH4++OH-
这一平衡受pH值的影响,pH为10.5~11.5时,因废水中的氨呈饱和状态而逸出,所以吹脱法常需加石灰。
吹脱过程包括将废水的pH值提高至10.5~11.5,然后曝气,这一过程在吹脱塔中进行城市污水的深度处理---氮磷的去除)。
该过程受温度的影响较大,随温度的降低,为达到同样处理效果所需的空气量迅速增加,由于用石灰调pH值,在吹脱塔中会发生碳酸钙结垢现象,影响运行。另外,NH3气的释放会造成空气污染。因此,对该工艺已有多种改进,例如使吹脱塔的气体通过H2SO4溶液以吸收NH3。
(2)折点加氯法
在净水工程中,称氯胺为化合余氮,次氯酸为余氯,均有杀菌作用。
城市污水的深度处理---氮磷的去除途中A、B二个折点A点前余氯基本上是氯胺,B点称这点,折点后余氯基本上是自由氯(游离氯)家率脱氮时采用的加氯量应以折点相应的加氯量为准。
此法最大的优点是通过适当的控制,可完全去除水中的氨氮。为了减少氯的投加量,此法常与生物硝化联用,先硝化再除微量的残留氨氮。
(3)离子交换法 用离子交换法去除氨氮时,常用天然的离子交换剂,如沸石等。与合成树脂相比,天然离子交换剂价格便宜且可用石灰再生。采用合成树脂,预处理工序和再生系统均较复杂,且树脂寿命短,应用上受到一定的限制,在此不作详述。
2生物法脱氮
(1)生物脱氮机理 生物脱氮是在微生物的作用下,将有机氮和氨态氮转化为N2和N20气体的过程。其中包括硝化和反硝化两个反应过程。
硝化反应是在好氧条件下,将NH4+转化为NO2-和NO3-的过程。此作用是由亚硝酸菌和硝酸菌两种菌共同完成的。这两种菌属于化能自养型微生物。其反应如下:
NH4++2O2=NO3-+2H++H2O
硝化细菌是化能自养菌,生长率低,对环境条件变化较为敏感。温度,溶解氧,污泥龄,pH,有机负荷等都会对它产生影响。
硝化反应的适宜温度为20℃~30℃。低于15℃时,反应速度迅速下降,5℃时反应几乎完全停止。
由于硝化菌是自养菌,若水中BOD5值过高,将有助于异氧菌的迅速增殖,微生物中的硝化菌的比例下降。硝化菌的生长世代周期较长,为了保证硝化作用的进行,泥龄应取大于硝化菌最小世代时间两倍以上。
硝化反应对溶解氧有较高的要求,处理系统中的溶解氧量最好保持在2mg/L以上。另外,在硝化反应过程中,有H+释放出来,使pH值下降。硝化菌受pH 值的影响很敏感,为了保持适宜的pH值7—8,应在废水中保持足够的碱度,以调节pH值的变化。1g氨态氮(以N计)完全硝化,需碱度(以CaCO3 计)7.1 g。
反硝化反应是指在无氧条件下,反硝化菌将硝酸盐氮(NO3-)和亚硝酸盐氮NO2-)还原为氮气的过程。反应如下:
6NO3-+5CH3OH=5CO2+3N2+7H2O+6OH-
反硝化菌属异养型兼性厌氧菌,在有氧存在时,它会以O2为电子受体进行好氧呼吸;在无氧而有O3-或N02-存在时,则以N03-或N02-为电子受体,以有机碳为电子供体和营养源进行反硝化反应。
在反硝化菌代谢活动的同时,伴随着反硝化菌的生长繁殖,即菌体合成过程,在反硝化反应中,最大的问题就是污水中可用于反硝化的有机碳的多少及其可生化程度。当污水中BOD5/TKN>3~5时,可认为碳源充足。不同的有机碳将导致反硝化速率的不同。碳源按其来源可分为三类:
①外加碳源,多采用甲醇,因为甲醇被分解后的产物为CO2,H20,不产生其它难降解的中间产物,但其费用较高;
②原水中含有的有机碳;
③内源呼吸碳源——细菌体内的原生物质及其贮存的有机物。
反硝化反应的适宜pH值为6.5~7.5。pH值高于8或低于6时,反硝化速率将迅速下降。
反硝化反应的温度范围较宽,在5℃~40℃范围内都可以进行。但温度低于15℃时,反硝化速率明显下降。
(2)生物脱氮工艺 生物脱氮技术的开发是在30年代发现生物滤床中的硝化、反硝化反应开始的。但其应用还是在1969年美国的Barth提出三段生物脱氮工艺后。现对几种典型的生物脱氮工艺进行讨论。
①三段生物脱氮工艺
该工艺是将有机物氧化,硝化及反硝化段独立开来,每一部分都有其自己的沉淀池和各自独立的污泥回流系统。使除碳,硝化和反硝化在各自的反应器中进行,并分别控制在适宜的条件下运行,处理效率高。
由于反硝化段设置在有机物氧化和硝化段之后,主要靠内源呼吸碳源进行反硝化,效率很低,所以必须在反硝化段投加外加碳源来保证高效稳定的反硝化反应。随着对硝化反应机理认识的加深,将有机物氧化和硝化合并成一个系统以简化工艺,从而形成二段生物脱氮工艺成为现实。各段同样有其自己的沉淀及污泥回流系统。除碳和硝化作用在一个反应器中进行时,设计的污泥负荷率要低,水力停留时间和泥龄要长,否则,硝化作用要降低。在反硝化段仍需要外加碳源来维持反硝化的顺利进行。
②Bardenpho生物脱氮工艺
该工艺取消了三段脱氮工艺的中间沉淀池。该工艺设立了两个缺氧段,第一段利用原水中的有机物为碳源和第一好氧池中回流的含有硝态氮的混合液进行反硝化反应。经第一段处理,脱氮已基本完成。为进一步提高脱氮效率,废水进入第二段反硝化反应器,利用内源呼吸碳源进行反硝化。最后的曝气池用于吹脱废水中的氮气,提高污 泥的沉降性能,防止在二沉池发生污泥上浮现象。这一工艺比三段脱氮工艺减少了投资和运行费用。
③缺氧一好氧生物脱氮工艺
该工艺于80年代初开发。该工艺将反硝化段设置在系统的前面,因此又称为前置式反硝化生物脱氮系统,是目前较为广泛采用的一种脱氮工艺。反硝化反应以污水中的有机物为碳源,曝气池中含有大量硝酸盐的回流混合液,在缺氧池中进行反硝化脱氮。在反硝化反应中产生的碱度可补偿硝化反应中所消耗的碱度的50%左右。该工艺流程简单,无需外加碳源,因而基建费用及运行费用较低,脱氮效率一般在70%左右;但由于出水中含有一定浓度的硝酸盐,在二沉池中,有可能进行反硝化反应,造成污泥上浮,影响出水水质。
随着生物脱氮技术的发展,新的工艺不断被开发出来,如氧化沟、序批式活性污泥法等,可在同一池中通过控制运行条件,在不同时段,形成缺氧和好氧的条件,从而达到除碳和脱氮的目的。另外,人们又开发了与除磷相结合的脱氮工艺,该内容将在本节后面加以讨论。
由于过量的氨氮与硝酸盐及亚硝酸盐会破坏水质,因此含氮化合物的去除非常关键。氨在水环境中挥发需要一定量的氧,氧化一克的氨需要4.7克氧。对水生生物来说,亚硝酸盐是有毒物质,并可使人诱发高铁血红蛋白症(血液中携氧量减少),因此在污水被排放至自然水域之前,要求有效去除污水中的氮。
在废水处理当中,氨氮去除一直是个难题,传统式除氮始于氨氮氧化为亚硝酸氮及硝酸氮(硝化作用),完结于亚硝酸氮或硝酸氮转变为氮气(反硝化作用)。但是实际运行中,硝化细菌对环境因素非常敏感,生长繁殖很容易受到抑制,传统的除氮法在第一步已经受阻,后续步骤就没法进行。碧沃丰提供高效硝化菌的同时,对传统除氮方法也进行了改进。
氮在污水中有四种形态:
1. 有机氮(氨基酸、蛋白质、嘌呤、嘧呤和核酸)
2. 氨氮(NH3-N)
3. 亚硝酸氮(NO2-N)
4. 硝酸氮(NO3-N)
在未处理的污水中,主要成分通常是氨氮化合物和有机氮。这些成份氧化为亚硝酸氮后转变为环境中的硝酸氮。
传统的生物硝化作用有两个步骤:在亚硝化细菌的作用下氨氮开始转化为亚硝酸氮,随后在硝化细菌的作用下亚硝酸氮被氧化为硝酸氮。这些菌类都是硝化作用过程中典型的菌种,都是自然界中以二氧化碳为碳源的自养菌种。
由于这些菌种对环境的敏感度极高,用自给营养的细菌将氨氮通过硝化作用转化为硝酸氮就存在很多问题。
该处理需要几天以上的细胞平均停留时间(MCRT),因此细菌数需要达到一个极大值才有效。细菌对系统中低温和有毒化学物质非常敏感。在寒冷气候下,硝化速度会大幅度降低。10℃以下细菌将停止生长,30℃是最适宜温度。
本文由:www.dgglhb.com整理编辑
污水处理全国24小时咨询热线:
400-005-3360